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Abstract

A series of market reforms were introduced in 2002 in the Chinese whole-

sale coal power sector. The period immediately after is widely recognized as

having had inconsistent service and many blackouts in China, and it is generally

accepted that many of the reforms were not fully enacted. Yet, researchers

consistently find that these reforms resulted in efficiency gains for power plants.

Using new physical and matched financial data, as opposed to only financial

data, I find no evidence that there were efficiency gains at the plant-level. I

also find that in the aggregate there were large productivity declines over this

period. A lack of efficiency gains would also imply that the reforms had no

effect on reducing pollution. Any measurable gains in either case are mainly

due to input and output price fluctuations.
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1 Introduction

China has undergone many privatization and market reform efforts over the past two
decades, so it provides an extremely useful context for investigating if deregulation
promotes competition, and in turn productive efficiency. Of particular interest is the
Chinese electricity sector, specifically coal, which is the largest energy market (and
largest source of carbon emissions) on the planet. Chinese coal power is central to
debates about climate change and environmental policy, extremely important to the
lives and welfare of Chinese people, but also extremely volatile.

Quantifying firm- or plant-level efficiency, and in turn aggregate efficiency, can
be hampered by relying on expenditure or revenue data rather than separate prices
and outputs/inputs, famously argued in Klette & Griliches (1996). This paper applies
this idea to electricity deregulation efforts in China. Using the series of reforms to
China’s electricity generation sector in 2002, I study, using production data, whether
there are measurable efficiency gains at the plant level in response to these policy
changes. Such gains are commonly found in the previous literature that largely relies
on revenue and expenditure data. I then extend this analysis to aggregate productivity
measures, which have yet to be thoroughly studied in this market.

This paper is the first to empirically investigate, via a case study with a novel
dataset, whether measured gains from electricity market reforms are sensitive to
biases from missing price and quantity data. In the case of China, where firm-
side control over prices is ambiguous and subject to policy influences outside of
plants themselves 1, this may be particularly problematic. Since prices are deter-
mined largely by local and federal authorities, for example, price changes may be
systematically correlated with key variables like state ownership status.

The 2002 reforms are especially at risk of this type of bias: China made multiple
policy changes in 2002 to reform the electricity generation market, some of which
may have had direct effects on prices. While the government made initial steps
toward electricity deregulation and lowering administrative costs for power plants
in 2002, they simultaneously deregulated the coal input market (which had treated
state-owned firms preferentially with a "two track" system), which may have altered
prices systematically (Gao & Van Biesebroeck, 2014). Parallel to this were multiple
1This also makes it difficult to use productivity methods that rely on explicit optimization equations
from firms, like De Loecker & Warzynski (2012).
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technology mandates (Ma & Zhao, 2015) and high-level administrative changes
(Gao & Van Biesebroeck, 2014). However, if efficiency gains are found empirically
using expenditure-based measures and not physical ones, it suggests there was no
improvement in technical efficiency, and only that prices fluctuated in response to
policy changes. The central contribution of this paper is to demonstrate this fact at
both the individual plant and aggregate levels. Using physical and financial data
together, I also directly demonstrate mechanisms that alter the measurement of
efficiency gains in Chinese electricity.

In the context of China, this paper is the first to examine the effects of electricity
reforms on aggregate efficiency measures. The elimination of unnecessary bureau-
cracies in plant-level decision making could make for more efficiently run plants,
but the relative allocation of production across plants may remain unchanged due to
government controls.

Many papers study these reforms, such as Du et al. (2009), Du et al. (2013), Gao
& Van Biesebroeck (2014), Ma & Zhao (2015) and Wei et al. (2018). Many are
limited to expenditure and revenue data, or have either limited samples or limited
input data. Thus, this paper also unifies several strands of analysis of Chinese coal
power reforms by attempting to combine several data-related or methodological
advances.

There are three major methodological components to this paper. The first is
a set of partial factor productivity models, where inputs are regressed on outputs,
a series of control variables, and a difference-in-differences variable. This model
is in the vein of Fabrizio et al. (2007) and Gao & Van Biesebroeck (2014). Gao
& Van Biesebroeck (2014) argue that state-owned firms were more exposed to the
reforms of 2002 and function as a treatment group for a difference-in-differences
analysis. I combine this insight with a version of their model that is adapted to the
presence of physical data on output and inputs. Estimating equations are derived
from a production function and cost minimization assumptions.

These PFP models do not directly estimate a plant’s total factor producitivty
(TFP) residual in full, as they only seek to capture the components of production
that change for state-owned plants in response to the reforms. I thus also apply
techniques from Ackerberg et al. (2015) (and Gandhi et al. (2020) for robustness)
and use the same difference-in-differences analysis.
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An advantage of the TFP estimation is I can use the estimated residuals to do
the third portion of the paper: aggregate productivity analysis for both physical and
revenue/expenditure data. I do this via a set of decompositions from Olley & Pakes
(1996) and Melitz & Polanec (2015), which allow me to gauge the role of intensive
margin productivity increases, entry, exit, and most importantly, reallocation of
production among different firms over time.

I find little evidence that the 2002 electricity market reforms in China caused any
differential efficiency gain for treated (state-owned) plants when physical measures
of inputs and outputs are used. This result applies for both the TFP and PFP models.
Together, they imply that any previously estimated welfare gains or reductions in
pollution may not have been realized. For the PFP models, I am able to demonstrate
directly that the shift in results from the previous literature is due to price movement
that could not be omitted from revenue/expenditure data. Since I do find that
some outcomes, like prices, are responsive to the DID analysis, the 2002 electricity
reforms in China are likely an example of "imperfect regulation" in energy markets,
as discussed in Cicala (2022) and Joskow (2008).

In the case of aggregate productivity, I find a stark contrast between expenditure-
based and physical measures of total factor productivity. This is a common channel
for benefits in electricity restructuring, as documented in Cicala (2015) and Cicala
(2022). Papers looking at other industries in China, like Hsieh & Klenow (2009),
find a substantial remaining role for reallocation. For this sector specifically, Wei
et al. (2018) and Kahrl et al. (2013) show in the aggregate that there is some room
for productivity growth, so it is unlikely that this sector was already operating at
maximum possible efficiency.

Broadly, this paper contributes to the debate on the general effectiveness of
electricity reforms happening in many different countries. For example, Cicala
(2015), Fabrizio et al. (2007), Newbery & Pollitt (1997), Joskow (2008), and Cicala
(2022) have all found broadly positive, if complex, results from restructuring in
western countries. Han et al. (Forthcoming) have recently found conflicting effects
in the United States, but the balance of the evidence is that restructuring does tend to
increase plant-level and aggregate productivity.

The contrasting results between physical and revenue-based measures of pro-
ductivity also contribute to the literature on productivity measurement. Foster et al.

4



(2008) established that in the US, revenue-based measures may obscure the im-
portant and separate roles that demand and technical efficiency play in analyses of
aggregate productivity and firm survival. Similarly, Haltiwanger et al. (2018) show
that misallocation analysis such as Hsieh & Klenow (2009) that rely on revenue and
expenditure data are extremely sensitive to model misspecification and require very
specific assumptions on supply and demand. Klette & Griliches (1996) and Ornaghi
(2006) prove that conventional TFP estimation methods will misspecify production
functions if revenue and expenditure data is used.

The paper proceeds as follows: section 2 discusses the institutional and historical
details for this analysis. Section 3 presents and summarizes the data used in the paper.
Section 4 presents models and estimation. Section 5 features parameter estimates
and decomposition results, while section 6 has robustness checks and extensions.
Section 7 concludes.

2 Background and Motivation

2.1 History and Reforms

China features many institutional specifics that inform an analysis of electricity
market restructuring. There is a mix of state-owned, jointly owned, and purely
private power plants in China’s wholesale power market (Liu, 2013), though there is
no ex ante clear, systematic way that this status affects their production or pricing
outcomes.

The key reforms from 2002 considered in this paper are in the Notice of the State

Council on the Issuance of the Reform Plan for the Electricity System. Several major
reforms were considered or enacted in a short timeframe. They involved breaking
up a major state-owned enterprise into five smaller companies and separating admin-
istrative functions at the federal level for transmission and generation. There was
also a contemporaneous deregulation of the input (coal) market, and pilot programs
in select provinces for market-based pricing 2. Not all of the reforms were made
permanent, or fully committed to. Assessing the market in 2017, 15 years after
the initial reforms, a Resources for the Future report said that Chinese wholesale
2See, i.e., Liu (2013) or Ho et al. (2017).
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electricity "has no spot market" (Ho et al., 2017).
Central to this paper is a difference-in-differences specification that considers

state-owned plants to be the "treated" plants. The previous literature on the subject
has thoroughly argued why this is a useful framework for casual analysis. Gao &
Van Biesebroeck (2014) cite a host of contemporary evidence that the 2002 reforms
should boost competition and have particular causal effects on state-owned plants
and firms. For example, in 2003 (as part of the process of the 2002 reforms) the State-
owned Asset Supervision and Administration Commission was created to better
manage and develop performance metrics for state-owned enterprises in particular.

State-owned plants also had more preferential access to lower coal prices under
the "two track" pricing system prior to 2002. Essentially, power plants were promised
explicit volumes of coal at guaranteed prices, and these terms were often more
favorable for SOEs (Gao & Van Biesebroeck, 2014). That is, all plants were input
price takers for a large portion of their coal, with SOEs receiving generally lower
prices After 2002, a higher proportion of coal began to be sold in actual markets,
which could effectively raise prices more for SOEs given their prior preferential
access. However, through either equilibrium effects or other contemporaneous
reforms, it is ambiguous what the ultimate effect would be. Parallel to this, as
documented in Ma (2011), output prices did not shift accordingly in response to
input price changes.

Gao & Van Biesebroeck (2014) explain that electricity reforms were done along-
side many reforms in the broader manufacturing sector that tightened standards for
SOEs and forced them to "focus more narrowly on their core business". Thus, in ad-
dition to the direct reforms undertaken on SOEs, the government had also made clear
its intentions to increase competition and technical efficiency among SOEs in the
broader economy. Ma & Zhao (2015) discuss how parallel to this several technology
mandates happened after 2002 that may contaminate a differences-in-differences
estimation. These include targeting of small generation units for decommissioning
and the promotion of new capacities.

It is clear that whatever reforms took place, qualitatively no "full" deregulation
of wholesale coal-powered electricity happened. As explained in Liu et al. (2013),
some of China’s reluctance to go fully into market-based reforms at this time has
to do with the mixed results that restructured markets began seeing, especially in

6



the United States. This qualitative pictures contrasts with the now substantial body
of work, including Gao & Van Biesebroeck (2014), Ma & Zhao (2015), Wei et al.

(2018), Du et al. (2009), and Du et al. (2013), that has empirically found efficiency
gains in response to these reforms.

In the aggregate, news sources from the time do not depict a productive, effi-
ciently run sector. Power outages over large areas were commonly reported over
this time, and the real focus of the Chinese government was seen as prioritizing
capacity expansion to meet rapidly growing demand (Shunkun et al., 2013). There
are many examples of news coverage from the time documenting power shortages,
for example in December 2003, factory workers were made to work nights in Shang-
hai to accommodate power shortages 3. Shunkun et al. (2013) document that the
shortages were worst among "economically developed provinces in coastal areas,
such as Zhejiang, Jiangsu, and Shanghai."

Demand was growing so quickly during this period that planners may not
have been focused on efficiency. A planned market like this can clearly lead to
x-inefficiencies. If plants do not directly influence prices or quantities, they will not
make costly investments in streamlining their production processes. Similarly, plants
with existing efficiency advantages are unable increase their production share due to
the lack of a spot market. If national priorities are on meeting consumer demand or
sustainable development as argued in Liu (2013), then the distribution of production
across plants may not sufficiently take into account their individual efficiencies.

Between the ongoing debate on how successful electricity restructuring is overall,
and the debate on whether the reforms in China specifically succeeded, it is clear that
this event is an important case study to address in light of increasing data availability.
This is true for direct policy reasons and for our ability to understand deregulation
and competition in general. While this paper is primarily focused on the Chinese
experience, a positive relationship between electricity deregulation and technical
efficiency has been documented in many other settings, as demonstrated in Cicala
(2022), Cicala (2015), Fabrizio et al. (2007), and Newbery & Pollitt (1997), among
others.

Joskow (2008) provides a thorough review of this literature, and emphasizes

3See Watts (2003)

7



that several concurrent steps are necessary for electricity deregulation to achieve
its desired goals. Joskow (2008) argues that successful implementation of several
measures, including vertical separation of transmission and generation, and horizon-
tal restructuring of the regeneration market, are key to the success of deregulation.
Joskow argues electricity market liberalization has been successful in "the UK, the
Nordic countries, Argentina [...], Chile, Texas, portions of Australia and other coun-
tries and regions." The 2002 reforms in China certainly aimed to accomplish several
of these steps, but it remains doubtful how successful they have been to date.

2.2 Theoretical Background

The theoretical debate on how to measure and relate productivity (or efficiency),
privatization, and competition extends well beyond the electricity sector. As doc-
umented in Backus (2020), the correlation between competition and productivity
is well established across many industries. Backus (2020) also finds that this is
usually due to firm-level responses to competitive conditions. This is the crux of the
theoretical argument for potential efficiency gains in this context: as competition
is introduced to Chinese electricity, individual plants will become more efficient in
response, and both individual and aggregate productivity will increase. However,
recent theory on productivity measurement suggests that it is extremely sensitive to
a researcher’s assumptions and methods.

A seminal paper on productivity measurement is Klette & Griliches (1996),
which shows that productivity estimation which uses revenue as a proxy for output
is contaminated by firm-level prices. More often than not, these will be correlated
with objects of interest and are difficult to assume away. These types of biases are
further explored in Ornaghi (2006). This tension has been leveraged recently by
papers like Foster et al. (2008), who explicitly model the fact that price effects,
when separated from technical efficiency, should provide valuable information on
firm-specific demand levels and shocks.

Despite theoretical advances in productivity measurement, many (if not most)
papers in the productivity literature are constrained by data availability and have
to rely on revenue and/or input expenditures. Papers like Hsieh & Klenow (2009),
which relies on a series of input first-order conditions, or De Loecker & Warzynski
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(2012) and Grieco et al. (2016), which combine first-order conditions with structural
productivity estimation, have attempted to address this issue via additional modeling
assumptions. However, Haltiwanger et al. (2018) and Bond et al. (2020) show that
both of these approaches will be insufficient in many cases. Given realistic compli-
cations (adjustment costs, relationships between inputs and demand), these methods’
measures of both productivity and markups may not contain useful information on
either object. The analysis in Ornaghi (2006) shows specifically for modern methods
TFP estimation that the use of revenue and expenditure data may lead to biased
production function and residual estimates, so I include these in the analysis as well.

3 Data and Descriptive Evidence

The key dataset for this paper is a confidential survey of coal power plants conducted
by the Chinese government. It is a subset of the data contained in the Chinese Envi-
ronmental Survey (CES), which has only recently become available to researchers,
but has been used in Ma & Zhao (2015) and Gowrisankaran et al. (2021). The
dataset is meant to cover 85% of electricity production in China. I observe the data
from 1997-1998, 2000, and 2002-2011 4. Major variables include a plant’s name,
power generated, coal used, and nameplate capacity.

Because this is a newly available dataset, it has had little time under public
scrutiny. Gowrisankaran et al. (2021), who observe additional pollution variables
not in my sample but otherwise draw from the same source, have found that the CES
contains at least 85% of the amount of sulfur dioxide emissions reported by aggregate
sources in China. Thus, this dataset does not appear to understate pollution relative
to other Chinese sources, which would be a primary source of concern. I extend
the verification of this data to additional sources: the total coal energy production
reported in this dataset is very close to 85% of the aggregate figures reported by
the International Energy Agency in publicly available years. These numbers are
reported in the appendix in Table 22. Given that the IEA is an external source of
reporting, this strongly reinforces the dataset’s veracity.

Plants are then linked to the second major dataset used in this paper, the more
4Thank you to Shanjun Li, Deyu Rao, and many others for preparing this data and allowing me to
access it.
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commonly used financial census from the National Bureau of Statistics in China.
This dataset contains key financial variables for state-owned firms and all firms
above 5 million RMB in earnings. Note that employment data comes from the
financial census rather than the confidential survey. Thus, prior papers have had
more extensive use of employment data as compared to the coal use and production
data.

The financial dataset is stored at the firm level, while the physical data is stored
at the plant level. For most aspects of the analysis, this is only a minor issue:
specifications that use physical data only can just be run at the plant level 5, and
specifications that use the financial data are at least as accurate in this with the
previous literature that only observed financial variables. To the extent that the
plant-based analyses differ in their units of observation than the firm-based ones,
this is a positive feature of the data 6. As Gao & Van Biesebroeck (2014) point out,
the assumption that most firms are just one plant is largely accurate anyway, and
thus the distinction is minimal. For analyses that use price indices directly, these
indices are necessarily at the firm level.

The fullest version of the (physical) dataset contains 21,121 plant-year obser-
vations, though I focus on the much smaller subset that is matched to the financial
data. The primary reason for this is that the preferred recent method of identifying
state-owned enterprises, from Brandt et al. (2017) and others, requires financial data.
Table 1 shows what proportion of the near-universe of plants included in the physical
dataset survive the matching process. Given that 33% of plants are represented but
49% of capacity is represented, my sample skews toward larger plants.

While any selection is undesirable, there are several reasons why this sample
is still extremely useful for analysis. First, previous literature such as Gao & Van
Biesebroeck (2014) have found that large plants responded more to the 2002 reforms
in several key areas. Second, as documented in Ma & Zhao (2015), many smaller
plants were targeted for shutdown and were not included in long-term deregulation
efforts as a result. Third, while it is not directly testable, the financial census data
5The only variable of concern in these analyses would be state ownership status, which is derived
from the financial dataset. However, this would generally be defined at the firm level anyway, so it
would apply to all plants under the same firm equally.

6Gao & Van Biesebroeck (2014), for example, specify that their model would work best for plant-
based specifications.
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Table 1: Matched Sample Characteristics

Source Materials

% of Production 50%
% of Production from plants over 50 MW Capacity 51%
% of Capacity 49%
% of Plants 33%

Notes: Depicts the percentage of key totals that are captured in the sample where financial
and physical variables are matched. Key matching variables include company name,
ownership information and province. Percentages are of the totals in the physical dataset.

that previous results rely upon likely selects for larger firms since it has a lower
revenue cutoff for inclusion. Fourth, as shown later in the paper, this sample is
able to replicate key qualitative results from other papers that use financial data,
suggesting this sample is not underpowered to detect changes from the reforms.

From the physical data I can derive a plant’s "heat rate", a standard measure of
efficiency calculated by dividing coal input by power output. For my analyses, I
omit plants that never exceeded 50 MW 7 of capacity during their entire lifespan,
though since they are used in some regressions I include them in the full sample. I
omit plants with unrealistic heat rate and price indices 8. These result in the sample
sizes seen in the following tables. In Table 2 are a series of summary statistics:

7According to Ma & Zhao (2015), all plants of this size are targeted for closure. Thus, many of the
plants missed in the matching of the two datasets would also be excluded anyway.

8This includes heat rates below .05, above 2, input prices greater than 2 or below .1, and output prices
below .08 or above 2. This results in about 6% of the sample being dropped, though results are
qualitatively similar when they are included.
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Table 2: Means of Major Physical Variables (Matched Sample), 1995-2011

Year Cap (MW) Prod (MW) Heat Rate (tons/MWh) N
1995 224.0 180.3 .768 226
1997 220.9 141.0 .748 276
1998 239.1 134.6 .694 317
2000 269.0 153.0 .660 295
2002 336.6 206.0 .651 319
2003 305.0 203.1 .657 403
2004 341.5 236.0 .658 406
2005 368.9 242.2 .634 447
2006 456.7 279.5 .610 467
2007 490.0 289.4 .592 516
2008 541.8 306.3 .563 517
2009 589.9 335.1 .552 453
2010 644.8 385.0 .549 415
2011 674.8 418.0 .548 374

Notes: Table depicts summary statistics for years 1995-2011. Physical variables are from
confidential power plant survey, financial variables are from a combination of physical dataset
and financial variables from annual NBS manufacturing census. One RMB is roughly .15 dollars,
so the output price in 1998 of .26 000 RMB/MWh would equal about 40 dollars per MWh, while
the 2007 output price would be more like 47 dollars.

Average plant size grows rapidly over time, utilization (production/capacity)
stays relatively stable from 1997 on, and there is large net entry over time based on
the growth of the number of plants. There is a general trend downward in heat rates
which continues after 2002 and 2004. However, the total decline from 1995-2002 is
slightly larger than the total decline from 2002-2011, so it is difficult to detect any
effect from this presentation of the data. The financial variables, featured in Table
3, are considerably more limited in terms of their period of coverage, but provide
valuable insight.
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Table 3: Means of Major Financial Variables, 1998-2007
Year Price (000 RMB/MWh) (Linear) Marginal Cost (000 RMB/MWh) Input Price (000 RMB/Ton) N
1998 .374 .262 .411 294
2000 .370 .246 .392 279
2002 .372 .257 .414 304
2003 .384 .270 .421 382
2004 .341 .271 .433 377
2005 .385 .317 .530 419
2006 .374 .305 .517 441
2007 .385 .337 .597 490

Notes: Table depicts summary statistics for years 1998-2007. Physical variables are from confidential power plant survey,
financial variables are from a combination of physical dataset and financial variables from annual NBS manufacturing
census. Figures are for sample where revenue and physical data is matched.

Post-restructuring, using either 2002 or 2004 as a baseline year there is a clear
upward trend in input prices, but less so in output prices. This translates into higher
marginal costs as well. This is consistent with the findings in Liu et al. (2013),
where output prices remained more tightly regulated than input prices, resulting in
potentially large losses for power plants. This dramatic but asymmetric shift in prices
may differ by state ownership status and could have a large effect on the efficiency
of plant operations.

My primary method of defining state ownership is plants with majority capital
ownership from the state (argued for in Brandt et al. (2014)). In robustness checks
I also define SOE status to be plants currently or formerly owned by the state
monopolist firm broken up in 2002 (as in Zhang et al. (2001)). Both measures rely
primarily on the financial census data, which contains more detailed ownership
information. It is straightforward to match almost all of the matched observations to
observations other years for the physical data via their name, location information,
and size, but difficult to verify their status directly. I assume that these firms were
not privatized or socialized in 1995, 1997, 2010, or 2011, which extends their
identification as SOEs into years that are missing financial data. Because these are
strong assumptions, I verify the results that use these years are not sensitive to them
in robustness checks.
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Table 4: Summary Statistics By Ownership Category (2002 and prior)

State-Owned Firms Control Firms Difference in Means
Production (Million MWhs) 2.30 1.79 .51

(.16) (.08) (.17)
Capacity (MW) 409.3 346.0 63.32

(16.2) (15.8) (22.6)
Utilization 63% 62% .5%

(1.6%) (1.3%) (2%)
N1 619 694
Input Price .37 .40 .03

(.012) (.018) (.023)
N2 371 150

Notes: Table depicts summary statistics for years 2002. Physical variables are from confidential
power plant survey, financial variables are from a combination of physical dataset and financial
variables from annual NBS manufacturing census. N1 and N2 reflect different samples for different
variables. Standard errors in parentheses. Sources: NBS annual data and confidential survey of
power plants. Excludes plants under 50 MW capacity.

Given that the paper’s central analyses rely on difference-in-differences esti-
mators, trends and baseline levels of key variables before and after 2002/2004 are
central objects in the analysis. Table 4 shows that SOEs were on average larger and
produced more before 2002, but utilizations and input prices were comparable.

An important trend to consider is heat rates, input to output ratios that are often
considered the basic measure of a coal plant’s efficiency. Figure 1 (a) presents these
estimate in terms of tons of coal vs megawatt-hours of electricity produced 9.

While they are not identical, the SOE and private lines both decrease from the
start to the end of the sample and largely move together after 2002. The private
trend is a bit more volatile, but with the exception of 2000, there is no obvious
large divergence from the SOE trend. Regardless, the physical evidence in figure 1
(a) does not suggest any particularly strong decrease (which would correspond to
increased efficiency) for SOEs around the time of restructuring in . A graph that uses
a comparable measure for financial variables tells a very different story, however.

According to Figure 1(b) there is a marked asymmetric shift around 2004 10.
9These are of a similar magnitude to estimates from the US like 1.13 pounds/kWh at https:
//www.eia.gov/tools/faqs/faq.php?id=667&t=2

10Prior to that, the two lines are on similar trends, though it is slightly difficult to tell with the limited
pre-trend data in this particular sample since the expenditure data does not extend to 1995 or
1997. However, this is not a major concern since expenditure data features in prior analyses in the
literature, and Gao & Van Biesebroeck (2014) show fairly conclusively that there is little evidence
of a pre-trend when the full set of fixed effects and controls is accounted for in the DID analysis
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Figure 1: Input to Output Ratios, SOE vs Private Plants
(a) Heat Rates
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Notes: Heat rates determined by dividing coal use by power produced (lower is better). Graphs
only uses the sample of plants matched between physical and financial datasets. Excludes plants
below 50 MW maximum capacity. Source: confidential coal power plant survey and financial
census data.

This stands in stark contrast to the prior graph with only physical terms, where SOE
and private heat rates were . This provides the first evidence that we will see a
divergence between physical and revenue-based assessments of the 2002 reforms.
Once the trends for both types of variables are separated, they imply substantially
different behavior for private plants and SOEs than earlier data would suggest. The
analysis for prices is presented in figures 2.

While the pre-trend input price data is limited, input prices between SOEs and
private plants appear to be moving in opposite directions before 2002. The post-2002
increase for private plants is more dramatic, although both types of plants appear
to experience a change. Figure 2 (b) shows that output prices demonstrate an even
more extreme version of this story: after 2004, prices rise much more sharply for
private plants than they do for SOEs. In the case of SOEs, the output prices are even
held below pre-2002 levels. Thus, while SOE input prices may also be rising slower
than those of private plants, there is no clear indication that they gained from this in
their average margins.

How exactly we should expect either input or output prices to differ, and what
exactly their bias will be, is discussed in Gao & Van Biesebroeck (2014). The
relative change in baseline subsidized state prices vs those resulting from increased
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Figure 2: Input and Output Prices, SOE vs Private Plants
(a) Input Prices
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Notes: Excludes plants below 50 MW maximum capacity. Input prices are calculated by dividing
input expenditure by coal use. Output prices are calculated by dividing revenue by power
generated. SOE status is derived from majority capital ownership status in the financial census
data. Points represent unweighted means across power plants. Source: confidential coal power
plant survey and financial census data.

market activity are difficult to predict. There is no ex ante obvious pattern these
two trends should take. We can now empirically verify that input and output prices
both increased for both types of plants, input prices rose faster, and that there was a
greater divergence in output prices. These turn out to lead to competing biases in the
data, as will be demonstrated with the fuller empirical models.

Thus far, the graphs speak very little to any aggregate change due to efficient
reallocation. If this happened along ownership lines, we can get a sense of this
with a graph of production shares by ownership status in figure 3, which is also
newly available with the data in this paper. 2002 corresponds to a stabilization of
previous trends in the data according to this figure, but there is no dramatic movement
afterwards. Thus, there is a possibility that efficient reallocation occurred in response
to restructuring, but it would depend on which particular plants participated in this
shift.
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Figure 3: Production Shares by SOE Status
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Notes: Shares are total amount of MW produced by all plants that share an ownership
status divided by all production by year.

4 Model and Estimating Equations

With the empirical context established, this section outlines the models and esti-
mating equations that will be used to measure efficiency and productivity. Chief
concerns are controlling for plant-level heterogeneity, size, year effects, and baseline
differences across ownership categories in analyzing the relationships seen in the
previous section.

4.1 Model Description

There are two major models in this paper: one using "partial factor productivity"
(PFP) models and one using "total factor productivity" (TFP) models. The PFP
models are a common way of testing restructuring in electricity markets, and a
variant of this analysis has been used in Gao & Van Biesebroeck (2014), in turn
derived from Fabrizio et al. (2007) and Du et al. (2009). Efficiency gains have been
found using full TFP estimation in Chinese electricity as well (for example in Ma &

17



Zhao (2015)). Thus, I use both methods to check the robustness of the main results
to different assumptions.

The TFP models attempt to estimate a production function and Solow residuals
using structural methods, while the PFP models rely on input first-order conditions
derived from cost minimization. In principle, the models should be capturing
different effects: the PFP model will capture all relevant changes solely due to
SOE status, both through changes in the production function and TFP residuals, for
each input at a time. However, it cannot estimate a Solow residual directly. The
TFP model should explicitly isolate a plant’s residuals and measure change in those
distinctly from their production function. While there is overlap in the efficiency
changes that the two models capture, they make different enough assumptions about
the production process that they would not necessarily produce the same results.
Additionally, the TFP estimation procedure allows for the assumption of a Cobb-
Douglas production function 11, and for decompositions that measure aggregate
productivity patterns.

As mentioned before, the analysis in this paper takes place at the plant (as
opposed to firm) level. Plants are assumed to have no control over their assigned
prices or quantities. Thus, much like previous papers in the literature, the PFP model
relies on cost minimization assumptions. As in Gao & Van Biesebroeck (2014),
plants are assumed to produce according to a Leontief functional form:

Q = min
M,L
{ f1(M,β ,εM), f2(K,L,α,εl)} (1)

s.t.Q≥ Q̄ (2)

This functional form is particularly appropriate for power plants: power genera-
tors run according to a mechanical process that burns fuel, and it is nearly impossible
to substitute for this with labor or capital in the short run. However, I relax this
assumption in robustness checks to make sure it is not driving the results.
11Though in the appendix I also present results for translog
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4.1.1 Partial Factor Productivity

The PFP models rely on a derived input demand equation for materials, which in
this case will be coal. Given the Leontief assumption, the intermediate input demand
equation can be approximated the following way, assuming f1 is monotonically
increasing:

lnMit = γi + γt + γ1lnQit + ε
M
it (3)

Where M is a plant’s material inputs, i indexes plants, t indexes years, and Q

is a plant’s output. For a revenue-based equation M can represent all expenditures
on materials. This provides a basic regression framework to identify the effects of
restructuring. Because I have access to physical input data, I am able to estimate this
equation directly, with a slight modification to detect the effects of restructuring:

lnMit = γi + γt + γ1lnQit + γrSTAT E0i ∗Restrucit + ε
M
it (4)

STAT E refers to state ownership status which serves as the treatment variable,
while Restruc is a pre- or post-restructuring variable (usually 2002, but also 2004
in robustness checks). Figure ?? suggests that material input to output expenditure
ratios increased more for private plants post restructuring. So, taking SOEs as the
treatment group means we expect to find a negative sign to reflect the fact that their
input/output expenditure ratio went up less (ie, they became less inefficient) when
we use financial variables. Whether this translates to the physical setting remains to
be seen.

f2 is assumed to be CES in the case of the PFP models:

Q = γ(αKρ +(1−α)νLρ)
ν

ρ eεL (5)

Labor input demand from cost minimization nets the following equation:

W = (1−α)νλQ
ν−ρ

ν Lρ−1 (6)

Here, as in Gao & Van Biesebroeck (2014), λ is the Lagrange multiplier from
the constraint of setting Q equal to Q̄. Taking logarithms, λ , which will vary by
individual and over time, becomes additively separable. Following Fabrizio et al.
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(2007) and Gao & Van Biesebroeck (2014) I include capital stock, log wages, and
fixed effects to attempt to absorb it. Other parameters will be absorbed by the
intercept and fixed effects. Incorporating relevant fixed effects and policy changes,
this can then be rearranged and rewritten as:

lnLit =αi+αt +α1lnQit +αW lnWit +αKlnKit ++αrSTAT E0i∗Restrucit +ε
L
it (7)

Since changes over time are the variable of interest, there is no need to consistetly
estimate ν , α or ρ . W are plant wages and K is a plant’s capital stock 12. Previously
in the literature, Q and M had to be replaced by revenue and expenditure variables
due to data limitations. Even with extremely detailed controls to proxy for prices, it
may not be possible to perfectly purge these models of plant-level heterogeneity in
prices.

In terms of estimation, this model is linear in parameters. A major source of
potential endogeneity comes from the inclusion of output on the right hand side.
While this is not the variable of interest, the results can be sensitive to the choice of
instrument. I present specifications using several instruments for logged output in
robustness checks. The baseline specification in Table 5 uses the lagged value (with
2nd lag for years with missing data) as an instrument for output. Lagged output is
one of the instruments that finds efficiency gains in Gao & Van Biesebroeck (2014),
so it allows for a fairly direct comparison.

Figures ?? and 2 indicate that this method will likely lead to different estimates
between financial and physical variables. The exact sign and size of the difference is
difficult to gauge before running the model, because there are two asymmetric shifts
in prices happening: input prices go up more for private plants, but so do output
prices. These will have opposing effects: if revenues (conditioned on all relevant
controls) get extremely inflated for private plants relative to SOE plants, more so
than input expenditures, it will appear like they became relatively more efficient.
However, if the input inflation is faster, then they will appear to have become less
12The residuals εL absorb any productivity shocks, which I do not quantify directly in this particular

model. The only way they are addressed is via instrumenting any potentially correlated variables.
Technically speaking, the coefficient on quantity α1 is equal to (ν−ρ)/(ν(1−ρ)) and αW equaling
−1/(1−ρ).
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efficient in response to the reforms.

4.1.2 Total Factor Productivity

The TFP analysis has two stages: a first stage, where production functions are
estimated directly and each plant’s TFP residual ω is recovered, and a second stage
where these residuals are used as dependent variables in a difference-in-differences
analysis.

I begin by assuming a Cobb-Douglas production function for the f2 function:

Q = ALβl Kβkeωeε (8)

Taking logs, f2 is represented the following conventional way:

q = β0 +βLlit +βKkit +ωit + εit (9)

Where lower case letters are logged inputs and outputs, and ω represents a
productivity shock that plants observe before they make their input decisions.

The basic conflict in TFP estimation is that if plants can observe ω , their TFP
residual, then input choices should be correlated with it, presenting an endogeneity
problem. Proxy variable approaches are widely used to estimate TFP within an
industry for this reason. Among the most popular and robust of these is Ackerberg
et al. (2015), which resolves identification issues of earlier entries in the literature. A
key assumption in the proxy variable approach is that plants (or in this case, possibly
regulators) observe ω when production decisions are made, but not εit . Ackerberg
et al. (2015) allow this function to be estimated accounting for the endogeneity of
ω via a series of assumptions of input timing, the invertibility of a plant’s choice
of materials depending on its productivity level, and the dynamic process that ω

follows. This allows the researcher estimate a production function and the associated
TFP residual in two steps: first isolate idiosyncratic errors ε from TFP ω , then use
the dynamic assumptions to form moments based on lags and changes in productivity
to estimate the production elasticities. In robustness checks I extend this approach to
more recent methods for gross production functions with 3 inputs from Gandhi et al.

(2020).
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The expected sign and magnitude of the bias due to using expenditure data using
this particular technique is ambiguous. Ornaghi (2006) documented that relying
on industry-level deflators rather than individual prices to convert to physical data
tends to lead to downward-biased scale estimates. Given the previously discussed
competing asymmetric price shifts in addition to this general phenomenon, the
expected effect on TFP residuals in particular is more difficult to characterize ex
ante compared to the PFP analysis.

5 Results

5.1 PFP Model Results

Table 5: PFP Regressions Using Physical Measures - Coal

(1) (2) (3) (4)

Restruc x SOE .040 .088 .028 .080
(.025) (.051) (.023) (.051)

SOE -.026 -.115 -.011 -.091
(.023) (.062) (.019) (.051)

Log Output .952 1.49 .951 1.49
(.022) (.124) (.021) (.159)

Restructuring Year 2002 2002 2004 2004
Power Instrument Lag Power Coal Input Price Lag Power Coal Input Price
N 3,144 1,878 3,144 1,878
Plants 544 424 544 424

Notes: Dependent variable is logged coal input use. Includes plant fixed effects and year fixed
effects. Standard errors are clustered at the plant level. All first-stage F statistics are above the
10% Stock-Yogo weak ID test threshold. Standard errors in parentheses. All regressions include
year fixed effects. Plants with maximum capacity below 50 MW are omitted. "Lagged power"
uses twice lagged data for missing years.

Table 5 contains parameter results from the baseline material PFP regressions using
physical measures (coal, output, capacity as capital stock) where appropriate. I
present four specifications: two for each quantity instrument (lagged power and coal
input prices), combined with 2002 and 2004 as the choices for the treatment year.
Given the new availability of plant-level price indices, I use this opportunity to test
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them as an instrument, in addition to lagged revenue which has achieved negative
point estimates in the previous literature.

For all four specifications, the point estimate of the treatment effect is positive,
and in columns (2) and (4) it is even significant at the 10% level. In the input
price specifications, the coefficient on log output may be implausibly large. In
columns (1) and (3), where the estimate is more reasonable the lower bound of the
95% confidence interval is under -2% in magnitude, which is less than half of the
estimates found in the previous literature, as seen in table 7.

To summarize: the baseline specifications present very little evidence that restruc-
turing caused state-owned plants to become disproportionately more efficient than
private ones in terms of coal use. In fact, the available evidence is mildly suggestive
toward increased inefficiency, though not precisely. In later robustness checks, I
show that this finding is robust to many other instruments previously used in the
literature, like 6-digit area code level production, 6-digit area code level employment,
province-level revenue/output.

The first column of table 7 and table 5 together provide instructive comparisons
for these results. While my sample differs substantially from that in Gao & Van
Biesebroeck (2014) and Du et al. (2009), both the 2002 and 2004 restructuring year
specifications find negative point estimates that are significant at the 5% level when
I use financial data. Due to sample selection concerns, the most useful comparison
is with the "large firms" specification from Gao & Van Biesebroeck (2014), which
is of a similar magnitude and sign. My sample is actually more favorable toward
a negative result using financial data than the previous literature, so the dramatic
switch to significantly positive coefficients in some specifications suggests that the
change is not just due to sampling noise. Note that my preferred choice of instrument,
lagged revenue, also results in negative coefficients in previous papers, although as
seen in robustness checks, any instrument commonly used in the previous literature
achieves the same result.

23



Table 6: PFP Regressions Using Physical Measures - Employment

(1) (2) (3) (4)

Restruc x SOE .077 .008 .038 -.05
(.043) (.043) (.041) (.040)

SOE .007 .065 .044 .090
(.052) (.051) (.048) (.046)

Log Output .636 -.281 .629 -.280
(.275) (.100) (.276) (.098)

Log Wage .060 .185 .061 .184
(.073) (.074) (.074) (.074)

Log Capacity -.342 .340 -.340 .339
(.195) (.094) (.196) (093)

Restructuring Year 2002 2002 2004 2004
Power Instrument Lag Employment Input Price Lag Employment Input Price
N 1,578 1,906 1,587 1,838
Plants 448 496 448 418

Notes: Dependent variable is logged physical production. Includes plant fixed effects and year fixed effects. Standard
errors are clustered at the plant level. All first stage F statistics are above the 10% Stock-Yogo weak ID test threshold.
Standard errors in parentheses. All regressions include year fixed effects. Plants with maximum capacity below 50 MW
are omitted. "Lagged employment" uses twice lagged data for missing years.

Table 6 presents results for the employment specification. The previous literature
is more mixed on the effects of restructuring on employment, but prior papers such
as Du et al. (2009) find significant efficiency gains using two periods of data. At least
one specification for the physical results, column (1) of Table 6, finds a significant
decrease in efficiency for SOEs, but no other regression finds a precise result. While
the employment results represent less of a nullification of previous findings, they do
very little to show that SOEs improved in response to restructuring.

With the full physical and financial data, it is possible to do further diagnostics
on what causes the discrepancy between the material regression results in Tables 5
and 7. In Table 8, I run four regressions to fully decompose the difference across the
two versions of a baseline regression with 2002 as the chosen restructuring year and
lagged output as the instrument. Columns (1) and (4) represent the original financial
and physical regressions, respectively, while column (2) only uses physical data for
output and column (3) only uses physical data for material use.

Table 8 clearly shows that only accounting for input price biases in materials
does not change the qualitative results from using only expenditure/revenue data, but
correcting for output price biases does. In fact, while the standard error is larger in
column (2) than column (4), the highest positive point estimate comes from using
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Table 7: Key PFP Results Using Financial Measures

Source Materials Employment

Table 5 (1) replaced with financial variables -.078 .044
(.0397) (.037)

Table 5 (3) replaced with financial variables -.073 .005
(.026) (.035)

Gao & Van Biesebroeck (2014) Large Firms 2004 -.060 -.016
(.026) (.027)

Du et al. (2009) .0041 -.2939
(.0055) (.103)

Gao & Van Biesebroeck (2014) using Lagged Revenue 2004 -.039 -.067
(.029) (.028)

Notes: Du et al. (2009) is based off of financial data from 1995 and 2004 only. All estimates are
from regressions of logged inputs on a difference-in-difference variable and other controls.

log physical output and log input expenditure together. Together, these results help
explain the mechanisms behind the results in the previous literature and the reversal
with new data: First, there were asymmetric input and output price shifts between
SOEs and private plants in response to restructuring around 2002, which lead to
biases in different directions. Second, the different sensitivities of input and output
prices in Chinese electricity, as documented in Ma (2011), meant that the net effect
was to overestimate the pro-competitive effects of restructuring.

Taken together, the two mechanisms suggest that it is valid in principle for the
literature to have chosen ownership status as a treatment to evaluate China’s market
restructuring. The data supports the idea that outcome variables like prices did
respond to SOE status, which makes it ex ante plausible that incentive structures may
have also changes along these lines. The reforms that were successfully undertaken
were only partial, however. With the best available physical data, there is little evi-
dence that these reforms introduced meaningful competition into Chinese electricity.
Instead, they mostly shifted around two sets of prices that likely remained under
government control, and did not shift plant-level incentives for efficiency. Price
shifts in the aggregate were documented in Ma (2011) and others, but it had not been
established using plant-level evidence that the shift varied across ownership lines.

These findings bridge the discrepancy between the quantitative findings in the
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Table 8: Regressions Measuring Which Price Causes More Bias

(1) (2) (3) (4)
VARIABLES Input Expenditure Input Expenditure Materials Materials

Restruc x SOE -.078 .052 -.10 .040
(.040) (.052) (.041) (.025)

Log Revenue .871 .947
(.085) (.069)

Log Output .762 .952
(.094) (.022)

Restructuring Year 2002 2002 2002 2002

N 1,391 1,618 1,984 3,144
Plants 411 456 489 544

Notes: Dependent variables are logged. Output is instrumented using lags. Includes plant and
year fixed effects. Standard errors are clustered at the plant level. Standard errors in parentheses.
Plants with maximum capacity below 50MW are omitted.

literature so far and the ongoing view that China has yet to significantly deregulate
wholesale electricity markets established in Xu & Chen (2006), Liu (2013), and
many others. While price changes are important, Joskow (2008) and many others
explain that such reforms will not have their full effect unless a full process of
restructuring is undertaken.

Notable robustness checks in Table 13, discussed further in the next section,
include a variety of alternative instruments and sample specifications, such as includ-
ing small plants, or using other instruments from Gao & Van Biesebroeck (2014)
such as area-level production and employment.

5.1.1 Implications

If we take the weight of the PFP evidence to say that there is no effect on plant-level
efficiency, this implies that any direct welfare effects due to physical efficiency
changes are limited. However, it is worth noting that these PFP techniques using
financial data have found significant implications in the past: Gao & Van Biesebroeck
(2014) estimate that coal consumption would have been 27.4 million tons higher
without restructuring, with an associated loss of 78 million tons of carbon dioxide.
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For labor, they estimate a decrease in necessary workers of 22,100, which the PFP
analyses using fully physical data also do not support.

5.2 TFP Results

5.2.1 Plant-level Regressions

Other papers in the literature have found efficiency gains using TFP residual estima-
tion. The closest analysis to this in the literature is Ma & Zhao (2015), who also have
physical data. This paper makes several different methodological choices: namely
the use of the ACF method for estimate, the inclusion of labor as an input, and the
possible inclusion of fixed effects in the residual analysis. Other notable entries in
this literature include Zhao & Ma (2013) and Du et al. (2013).

Proxy methods like Ackerberg et al. (2015) have not been applied to Chinese
electricity. Van Biesebroeck (2007) indicates that ACF may be the most appropriate
option for this type of analysis compared to other estimation methods such as
Stochastic Factor Analysis (SFA) and Data Envelope Analysis (DEA). The paper
argues that DEA is "never the ideal method for estimating productivity growth",
while SFA is most appropriate "when one has good reason to believe that productivity
differences are constant over time", which there is no reason to suspect in this case.

Table 9 features two sets of results using logged TFP residuals (ω) from the
Cobb-Douglas production function as dependent variables. Borrowing from Ma
& Zhao (2015), I include a plant’s entry status, SOE status, log age, and exposure
to technology mandates as controls (represented by "Decommission" and "Entry").
All of these controls are also endogenized in the plant’s productivity process in
the initial ACF estimation, as recommended by De Loecker & Syverson (2021).
"Decommission" refers to plants below 100 MW capacity being targeted for closure,
and "entry" refers to plants that just entered in the current year13. Note that the PFP
results are robust to the inclusion of these controls in Table 13 later in the paper.
13Because I do not have generator-level data, I can not test for the effects of the three technology

mandates directly as in Ma & Zhao (2015). However, the mandates are indirectly captured by the
two control variables. "decommission" captures the targeting of small plants and "entry" captures
(partially) whether a plant has recently installed capacity, which was encouraged by the other two
mandates.
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Table 9: ACF Second Stage Results (Cobb-Douglas)

Financial Physical Financial Physical

Restruc x SOE -.072 -.024 -.033 -.004
(.081) (.039) (.061) (.039)

SOE -.116 -.019 -.000 .035
(.087) (.037) (.103) (.084)

Entry -.399 -.341 -.345 -.345
(.063) (.043) (.062) (.045)

Decommission -.483 -.044 -.040 -.142
(.101) (.040) (.056) (.052)

Log Age .080 .004 .091 .003
(.028) (.008) (.038) (.027)

Log Capacity/Fixed Assets -.035 -.018 -.406 -.026
(.036) (.008) (.080) (.027)

Restructuring Year 2002 2002 2002 2002
Plant FEs No No Yes Yes
N 1,866 2,522 1,866 2,522

Notes: Dependent variables are productivity measures from prior ACF estimation using a Cobb-Douglas specification.
Standard errors in parentheses. Standard errors are clustered at the plant level. All regressions include year fixed effects.
Excludes plants with maximum capacity below 50,000 MW.

In this model, a negative sign for the difference-in-differences coefficient cor-
responds to less efficiency. In all specifications, the treatment effect is never sig-
nificantly positive, regardless of which dataset is used or whether fixed effects are
included 14. As explained earlier, the expected sign of the bias due to the inclusion
of financial data is much more ambiguous in this case given the nonlinear estimation
method. While the bias would appear to run slightly in the opposite direction of the
PFP results, no specification has a positive point estimate. Thus, the TFP estimation
method contributes to the lack of evidence that restructuring introduced competition
and thus efficiency to the market. After incorporating proxy variable methods and
labor as an input the differences-in-differences specification is unable to detect any
particular efficiency gains for SOEs regardless of fixed effects or which type of
data is used. I present results using a translog function form in the appendix, which
similarly only generates negative results (including a specification that is significant
at the 5% level).

The two technology mandates, to the degree that they can be measured, are
consequential. "Entry" is significantly negative in every specification, while "de-
14As per De Loecker & Syverson (2021), fixed effects generally should not be included in ACF

residual regressions, but the findings are qualitatively similar whether they are included or not.
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Table 10: Key Previous TFP Results

Source Estimate Note

Ma & Zhao (2015) .0305*** Data envelope analysis on full physical dataset
Ma & Zhao (2015) -.0936*** Stochastic frontier analysis on full physical dataset
Zhao & Ma (2013) .0474** Data envelope analysis on a panel of 34 plants
Du et al. (2013) two inputs -.19*** Stochastic frontier analysis, financial data
Du et al. (2013) three inputs -.18* Stochastic frontier analysis, financial data

Notes: "Full physical dataset" refers to the physical dataset from this paper. "Financial data"
means only revenues and expenditure data were available. Negative estimates reflect efficiency
improvements for stochastic frontier analysis, positive the same for DEA.

commission" is more sensitive to the choice of dependent variables and fixed effects.
Thus, there is some evidence that the concurrent technology mandates had their
desired effects, as decommissioned plants produced less, all else equal. The effects
of entry policy are more difficult to determine, since entering plants would naturally
produce less in annual data.

Table 10 surveys the previous TFP results from the literature. For all estimates
that used data envelope analysis, the interaction on SOE and restructuring is signifi-
cantly positive, and for those that use stochastic factor analysis it is negative. All
reflect supposed efficiency improvements. As previously argued, the methodological
choices of proxy variable methods and using labor as an input are supported in
the productivity literature, so the results of this paper can be taken as a potential
nullification of prior results, especially alongside the PFP analysis from earlier.

5.2.2 Decompositions

The plant-level regressions describe whether individual plants became more produc-
tive over time. While seemingly they did not, it is possible that restructuring lead
to improved aggregate production. This question is not addressed in the previous
literature on Chinese coal power. To my knowledge, only aggregate patterns in
Chinese coal mining have been formally decomposed by Zhou et al. (2019).

Market restructuring could plausibly reallocate production from or to state-
owned plants. The former follows similar logic for why they should become more
productive on the intensive margin: before restructuring they did not face competitive
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pressure from private firms and just produced at whatever level was assigned to them.
If production becomes more freely allocated, then private plants may produce at
higher levels if state policies were unfairly favoring state-owned plants. As to why
state-owned plants may gain in their production share if competition and efficiency
are improved: they tend have lower marginal costs (about 7% lower on average,
significant at the 1% level) through the entire sample, so a net gain by SOEs could
result in aggregate improvement.

Given a distribution of productivity ωit and shares of production sit , one can
generate aggregate measures of productivity, its changes over time, and the relative
contributions of different groups to the aggregate figures. The Olley & Pakes (1996)
decomposition quantifies the role of both individual plant productivity and the
allocation of production in determining aggregate productivity. Here I apply both
their decomposition and the methodology developed in Melitz & Polanec (2015)
that extends it to incorporate the contributions of entering and exiting firms. The
latter works off of pairs of production periods: entrants E are firms present only in
the first period, exiters X are only in the second, and survivor S s are present in both.

A firm’s production share sit =
qit
Qt

is the relative amount of total production it
accounts for. Let sGt = ∑i∈G sit . The central terms in the decomposition will be
ΦGt = ∑i∈G(sit/sGt)ωit . These are group-level measures of aggregate productivity.
Define overall aggregate productivity to be ∑i(sit)ωit and select two years (1 and 2)
for comparison. With groups S for survivors, X for exiters, and E for entrants:

φ1 = sS1ΦS1 + sX1ΦX1 (10)

and

φ2 = sS2ΦS2 + sE2ΦE2 (11)

That is, aggregate productivity in the first period is composed of contributions
from firms who are either in both periods or the first only. Aggregate productivity in
the second period can only be from firms present in either both periods or only the
second.

The Olley & Pakes (1996) decomposition uses an equivalent figure of Φ for
aggregate productivity. This is split into two simple terms: the covariance between a
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Table 11: Log Productivity Percent Changes Relative to 1998 (OP Decomposition)

Year Total Mean Covariance
TFPR TFPQ TFPR TFPQ TFPR TFPQ

2000 -1.2 1.1 0.2 -2.5 -1.4 3.7
2002 2.8 -5.2 5.1 -12.9 -1.4 7.8
2003 4.8 -14.5 4.9 -18.7 -0.1 4.3
2004 8.3 -19.1 7.6 -18.5 0.7 -0.5
2005 10.0 -18.6 11.5 -19.9 -1.5 1.3
2006 11.9 -16.6 13.0 -18.6 -1.1 2.0
2007 13.6 -14.9 14.2 -18.6 -0.7 3.7

Notes: Aggregate productivity is determined by the weighted sum of individual productivities.
Shares are weighted by output. Terms are based on the ω residual from the logged version of a
Cobb-Douglas production function. "TFPR" refers to productivity from revenue-based estimation,
while "TFPQ" is from physical measures.

firm’s production share and its productivity, and the average unweighted productivity
across all firms. The former measures the role of allocation, while the latter measures
the role of average productivity regardless of production. The key distinction
between the OP and MP decompositions is the treatment of entry and exit: in
OP, the productivity of every firm is considered together, regardless of its status. As
explained in Backus (2020), hypotheses about productivity and competition do not
necessarily include or exclude entering or exiting firms. Table 11 the results of the
OP decomposition, with the terms converted into changes since 1998:

Because these are all changes relative to 1998, a negative should be interpreted
to mean that there a decline in term as of the date in question. The two types of
productivity do not have directly comparable units, so we can only look at their
trajectories. In Table 11, we can see that physical productivity predicts a massive
overall decline from 1998-2007, while revenue-based measures predict growth.
Both trends are driven, however, by the "Mean" term, which does not capture
reallocation. The OP decomposition results are not consistent with any substantial
efficient reallocation of production for either TFPR or TFPQ.

It is important to note that the drastic decline overall in TFPQ is happening despite
some observed effects from input price deregulation and technology mandates earlier
in the paper. The evidence is consistent with the idea that without successful market
liberalization, or at least some realigning of the incentives of plants, other reforms
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Table 12: Log Productivity Percent Changes Relative to 1998 (MP Decomposition)

Year Total Survivors Entering Exiting
TFPR TFPQ TFPR TFPQ TFPR TFPQ TFPR TFPQ

2000 -1.2 1.1 1.5 -3.4 -1.6 2.5 -1.1 2.0
2002 2.8 -5.2 3.5 -3.7 0.1 -1.8 -0.8 0.3
2003 4.8 -14.5 6.3 -16.0 -1.4 0.5 -0.1 1.0
2004 8.3 -19.1 10.1 -20.5 -2.7 2.6 0.8 -1.0
2005 10.0 -18.6 12.3 -20.4 -2.9 2.8 0.6 -1.0
2006 11.9 -16.6 13.1 -17.2 -2.3 1.3 1.0 -0.7
2007 13.6 -14.9 13.7 -13.3 -1.0 1.0 1.0 -2.6

Notes: Aggregate productivity is determined by the weighted sum of individual productivities.
Shares are weighted by output. Terms are based on the ω residual from the logged version of
the translog production function. "TFPR" refers to productivity from revenue-based estimation,
while "TFPQ" is from physical measures.

are not translating into aggregate efficiency on their own. For any of the reforms to
be successful, it is likely the case that they need to be undertaken together, as argued
in in Joskow (2008).

While it is difficult to say whether the decline in TFPQ is due to restructuring
directly or not, we can further decompose some of the sources. Table 12 features
results from running the MP decomposition on every year in the sample with 1998
as the first year to highlight the role of entry and exit.

The dramatic TFPQ decline is largely accounted for by surviving plants. While
there are likely many explanations, a response to the effects of restructuring would
make sense: price incentives, net entry, and the administrative structure changed
significantly around 2002. Power plants may take years to adjust to the new regula-
tory environment and uncertainty. This result also aligns with qualitative reports of
the time: 2003-2006 is notably seen as a time of widespread power outages across
China due to supply shortages, for example in Shunkun et al. (2013). If power plants
are operating at near full capacity to meet demand, their productivity may suffer
as their marginal cost curves rise near capacity constraints. While these supply
shortages may not have been caused by restructuring itself, the TFPR trends on their
own provide very little corroborating evidence of the widespread power shortages.
This may be because the government enacted relevant price changes to offset these
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effects.

5.2.3 Implications

According to Gao & Van Biesebroeck (2014), aggregate statistics suggest that coal
intensity for the electricity sector as a whole declined from 2002 to 2006, while
the share of coal plants in total generation increased. This would suggest that in
the aggregate, there had to be some form of productivity gain. The results thus
far suggest that it is not due to any gains among surviving plants, and among all
plants no gains are driven on the intensive margin be SOEs. One drawback of the
proxy variable method to TFP estimation is it is extremely difficult to calculate
counterfactual paths of productivity and input use, so it is difficult to say exactly how
much coal or labor could have been saved in the aggregate under alternative policies.

This leaves only a few plausible channels for the suggested productivity growth
seen in other sources. First is technological innovation or increased scale from
entering plants during the period. The MP decomposition supports this to some
extent: entering plants contribute to productivity gains in all years after 2002. The
decomposition does not calculate the cumulative gain from entering plants across
all years since it only compares 2 years at a time, but it is possible that by 2006 this
contribution was large. After 2002, entering plants are significantly larger in their
capacity (by about 50 MW) than the average incumbent plant. The other possibility
is that there are large productivity gains from the elimination of plants under 50
MW, which are not included in the decomposition. This hypothesis is supported by
the findings in Ma & Zhao (2015). Thus, the measured productivity losses among
surviving plants may possible to reconcile with other aggregate statistics when
considering entry and exit policy at the time.

6 Extensions and Robustness Checks

6.1 PFP Results

The top of Table 13 provides a series of alternative coefficient and standard error
values for the restructuring term for 2002. Checks include OLS, using small plants,
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including the full set of price heterogeneity controls from Gao & Van Biesebroeck
(2014), and using only a series of firms matched in the covariate space via the
Mahalanobis metric. I also exclude years for which SOE values were imputed, and
explore alternative state ownership definitions and measurement. In the case of the
materials regressions, all but two specifications rule out even a 4% effect at the 95%
level, while a strong majority rule out even 3%, both of which are well under the
main findings in the literature. Employment is significantly noisier, but there are
also now several specifications that are significantly positive at the 10% level.

I also investigate alternative instruments, given that many have been tested in
the literature. No instrument offers a significantly negative, even at the 10% level,
coefficient on either input. For any specification that passes both weak instrument
and overidentification tests, the coefficient is positive. In particular, the 6 digit
area code employment and production variables have been used in Gao & Van
Biesebroeck (2014) and found significantly negative results. Here, while these
instruments do not strongly pass a weak instrument test, the materials coefficient is
actually significantly positive at the 10% level. Combined with the evidence from the
baseline specifications, the robustness checks further confirm that there is very little
evidence that restructuring produced relative efficiency gains. Results are broadly
similar for 2004 (available upon request).
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Table 13: Robustness Checks for STAT E0 ∗POST 2002

(1) (2)
Dependent variable: ln(COAL) ln(EMPLOYMENT)
OLS .009 .030

(.017) (.039)
OLS no plant FEs .003 .022

(.022) (.067)
Including firms under 50 MW capacity .028 .054

(.020) (.046)
Including technology mandate controls .035 .073

(.028) (.042)
Including controls for price heterogeneity .021 .092

(.021) (.048)
Excluding imputed SOE years .049 .078

(.026) (.043)
Mahalanobis matching .043 .127

(.030) (.065)
SOE defined by "big 5" status .011 −.042

(.025) (.043)
SOE Status does not vary .025 .054

(.025) (.052)

Alternative Instruments

Log 6 digit area code employment and production .111# .026#

(.062) (.049)
Log input prices and lagged power .063! .052!

(.034) (.038)
Log input prices and twice lagged power .075! .053!

(.044) (.039)
Estimated in first differences with twice lagged revenue as instrument -.176 .007

(3.43) (.057)
Market production .054! .127

(.030) (.196)
Market revenue .055 .058

(.040) (.052)
Lagged and twice lagged power .020!# .070#

(.023) (.044)
Lagged power and log 6 digit area code total production .038!# .078#

(.028) (.043)

Notes: Dependent variables are logged. Power is instrumented with lags unless otherwise
specified. Includes plant fixed effects. Standard errors are clustered at the plant level. ! Cragg-
Donald F statistic passes Stock-Yogo test (true for all specifications in upper half of table). #
overidentification test succeeds at 5%. "Mahalanobis matching" refers to only using SOE and
private plants matched on the set of independent variables in the regression. "Big 5" refers to the
5 major state-owned companies that got broken up in 2002. Standard errors in parentheses.
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6.2 Gross Production Functions for TFP

All of the estimated functions thus far give very small elasticities for labor. The
Leontief assumption may overstate the true lack of substitutability of labor compared
to capital and coal use in the power plant’s process. A gross output production func-
tion that estimates the elasticity with respect to materials may serve as a sensitivity
test for the Leontief assumption.

Gandhi et al. (2020) have argued proxy variable methods that use materials as
their proxy may not be able to identify an elasticity for materials without further as-
sumptions, and the authors develop a new estimator that relies on profit-maximization
assumptions by firms. Their estimator can be summarized briefly in three steps:
First, given a functional form for production, take a plant’s first order condition with
regard to materials to estimate the materials elasticity as a function of their input
expenditure share. Second, with this information in hand, set up a partial differential
equation that relates the integral over materials of the first order condition 15 to
the production function and a constant of integration that relies on the other inputs
(capital and labor). Third, use Markov assumptions of productivity as in Ackerberg
et al. (2015) to form moments based on current and lagged inputs that can identify
the remaining production function parameters. The GNR results in Table 14 provide
analogous TFP residuals to ACF in table 21: a positive number means a productivity
increase, a negative number means a productivity decrease. Estimated elasticities
are available in the appendix.
15In the case of Cobb-Douglas, the partial derivative that gets integrated is just a constant, which will

result in an estimate of mit multiplied by the estimated materials elasticity for every plant.
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Table 14: GNR Second Stage Results

Restruc x SOE -.033 -.029
(.021) (.028)

Entry -.034 -.013
(.021) (.021)

Decommission .037 .002
(.027) (.025)

Log Age .017 .049
(.009) (.025)

Log Capacity .006 -.075
(.006) (.023)

Plant FEs No Yes
Restructuring Year 2002 2002
N 2,864 2,864

Notes: Dependent variables are productivity measures from prior GNR estimation using physical
output. Standard errors in parentheses. Standard errors are clustered at the plant level. Includes
year fixed effects.

Neither specification finds a significant improvement for treated plants, and the
point estimate for output is over 3 times more negative than that for revenue. Thus,
the results from a Cobb-Douglas gross output production function are consistent with
the rest of the paper. The results are also robust to using stochastic factor analysis
using Greene’s "true fixed effects" method (Greene, 2005) 16. Thus, neither the exact
assumptions of the ACF estimator, or the Leontief assumption, appear to be driving
any particular set of results in the paper.

7 Conclusion

I have demonstrated how the series of reforms undertaken in China’s electricity
sector in 2002 did not incentivize power plant-level or aggregate efficiency through
competition. In turn, I find no simultaneous welfare increases or pollution decreases
as in the previous literature. This was done using two methods. The first was the
difference-in-differences method pioneered by Fabrizio et al. (2007), modified for
China by Gao & Van Biesebroeck (2014), and augmented with new data on prices
16Results available upon request.
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and physical inputs and outputs. For these partial factor productivity methods, the
results apply to both materials and labor inputs, though the results for these differed
in the previous literature.

Newly measurable patterns in input and output prices show that for these out-
comes, there were observable shifts across ownership categories, and not in any
measure of technical efficiency. This provides a nuanced interpretation of the PFP
results in the previous literature: while measurement error may have lead to the
overstating of any pro-competitive effects of the market restructuring, state-owned
plants were a reasonable choice of treatment group that did receive special exposure
to the 2002 policies. However, the substantial welfare gains found in the previous
literature from shifted coal use and employment do not appear to have been realized.

The second major set of findings involved full TFP residual estimation using a
series of proxy variable methods. While the exact direction of the bias from missing
prices is much more difficult to predict using this method, specifications that use
physical data fail to find any positive results regarding efficiency gains. In addition,
I find that concurrent technology mandates had a significant effect on plant-level
productivity measures, but their measurement does not affect the results regarding
the 2002 reforms.

Finally, productivity decompositions following from the TFP estimation also
established that there was no aggregate effect via the reallocation of production
to more efficient plants. In fact, revenue-based measures find dramatically more
productivity growth than output-based ones. Any aggregate productivity losses
may not necessarily be due to restructuring, but the findings indicate there are not
efficiency gains to be found in the data at the plant or industry level.

Both the plant-level and aggregate evidence are consistent with the qualitative
findings on China at this time. The prevailing writing today among think tanks and
government sources today is that 2002 featured only a partial implementation of
China’s intended reforms, and that very little competition was introduced. It is clear
that in the present, wholesale electricity prices are not completely market-driven in
China. The aggregate findings also line up with retrospective writing about the period
that my sample covers: 2003-2006 was a period of widespread power shortages and
blackouts in China, which exactly lines up to the most severe aggregate productivity
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losses that I measure.
As the country’s focus shifts more toward climate change and emission reduction,

it is possible that introducing competition into the coal power sector may become
less important than using less coal entirely. However, as China is still extremely de-
pendent on coal, efficient use of inputs both within power plants and in the aggregate
are important policies to consider moving forward. The role of transmission infras-
tructure, like Ryan (2014) writes about in India, would also be an exciting direction
for future research as it is generally acknowledged as a significant bottleneck and
focus of the current Chinese government.
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9 Appendix

9.1 Pre-Trend Analysis

Below are the annual treatment effect estimates from an event-study model of the
partial factor productivity regression in column (1) of Table 5:
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Figure 4: Coefficients by Year For Materials PFP Regression
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Notes: Presents annual coefficient estimates for treatment effects from the material use
partial factor productivity regression. Log power is instrumented using lags. Includes
plant and year fixed effects.

While there is not a stark visual pre-trend before 2002, there is at least one
significantly negative point estimate in 1998 and a steep decline between 1997 and
1998. On average the pre-2002 points seemingly do not violate the parallel trends
assumption, but to check the results’ robustness I also run the "honest DID" approach
from Rambachan & Roth (2022).

The "honest DID" approach works the following way: estimate the worst viola-
tion of parallel trends in the pre-treatment part of the sample between two consecutive
years, called δ . Next, fix a constant M̄ and bound the treatment effect above and
below assuming the post-treatment observations violate parallel trends (in either
direction) by no more than M̄δ . In this case I restrict the estimate to the 2002 effect.
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Table 15: Rambachan & Roth (2022) Bounds - Coal Use

M̄ Lower Upper
0 -.025 .083
.25 -.048 .107
.5 -.082 .143
.75 -.121 .183
1 -.163 .225
1.25 -.206 .268
1.5 -.249 .311

Notes: Bounds represent results from Rambachan & Roth (2022) method used on the coal use
PFP regressions for the treatment effect in 2002. M̄ represents how much SOE and private
plants can violate trends post-treatment as a function of the worst-case scenario estimated trend
pre-treatment. For example, M̄ = represents the estimate with no parallel trends, and M̄ = 1
represents bounds where the most extreme change in slope between two points prior to treatment
is assumed to be the trend difference (positive or negative).

These bounds are unfortunately imprecise about the robustness of a null result
since similar amounts will be added to both ends of the interval as M̄ increases.
However, it can be useful to examine intervals which include estimates from the
previous literature, which start at values of M̄ around .25. These intervals also
admit as a possibility that there were double digit increases in SOE inefficiency in
2002. Thus, they confirm the assessment from earlier in the paper that the empirical
evidence is at best uncertain for the pro-efficiency effects of restructuring.

Below I repeat the two exercises for the employment regressions:
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Figure 5: Coefficients by Year For Employment PFP Regression
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Notes: Presents annual coefficient estimates for treatment effects from the material use
partial factor productivity regression. Log power is instrumented using lags. Includes
plant and year fixed effects.

Table 16: Rambachan & Roth (2022) Bounds - Employment

M̄ Lower Upper
0 -.056 .101
.25 -.078 .115
.5 -.113 .145
.75 -.158 .187
1 -.206 .234
1.25 -.254 .280
1.5 -.304 .330

Notes: Bounds represent results from Rambachan & Roth (2022) method used on the employment
PFP regressions for the treatment effect in 2002. M̄ represents how much SOE and private plants
can violate trends post-treatment as a function of the worst-case scenario estimated trend pre-
treatment. For example, M̄ = represents the estimate with no parallel trends, and M̄ = 1 represents
bounds where the most extreme change in slope between two points prior to treatment is assumed
to be the trend difference (positive or negative).

A very similar picture emerges as in the materials regressions, though with
somewhat more uncertainty and a shorter timeframe.
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9.2 Additional Production Function Estimates

9.2.1 Cobb-Douglas

The elasticity results from the Cobb-Douglas TFP estimation are below:

Table 17: ACF Production Function Parameters - Cobb-Douglas

(1) (3)
VARIABLES Physical Financial

k .975 .552
(.003) (.045)

l .052 .247
(.004) (.047)

N 2522 1866

Notes: Estimates are derived from a full translog production function using methods from Ackerberg et al. (2015). Log
age, decommission status, entry, SOE status, and SOE x restructuring are endogenized in the TFP process. "Physical"
refers to using physical input, output, and capacity variables, "Financial" refers to using revenues, input expenditures and
capital stock.

9.2.2 Translog

Table 18 shows the second-stage residual regression results using a translog specifi-
cation. The point estimates are far more negative using translog than Cobb-Douglas,
and the financial specification is slightly more negative than the physical one in this
case too. As with Cobb-Douglas, the precise degree and direction of bias due to the
purging of both input and output prices is extremely difficult to predict, in addition
to movement from the methodological and sample changes compared to the previous
literature.
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Table 18: ACF Second Stage Results (Translog)

Financial Physical Financial Physical

Restruc x SOE -.147 -.057 -.085 -.031
(.069) (.046) (.055) (.040)

SOE -.185 .049 -.085 .064
(.077) (.099) (.055) (.087)

Entry -.278 -.266 -.331 -.330
(.063) (.045) (.062) (.046)

Decommission -.292 -.053 -.093 -.140
(.076) (.050) (.058) (.054)

Log Age -.048 -.112 .065 -.016
(.024) (.012) (.039) (.028)

Log Capacity/Fixed Assets .169 .028 -.018 .055
(.021) (.013) (.024) (.029)

Restructuring Year 2002 2002 2002 2002
Plant FEs No No Yes Yes
Year FEs Yes Yes Yes Yes
N 1,866 2,522 1,856 2,522

Notes: Dependent variables are productivity measures from prior ACF estimation using a translog specification. Standard
errors in parentheses. All regressions include controls for log age and l

Table 19 features the elasticities from the Ackerberg et al. (2015) estimation
using a translog production function. SOE status, entry, and log age are included
as inputs. Much like in the Cobb-Douglas specification in the body of the paper,
controls are endogenous to the productivity process in estimation.

Table 19: ACF Production Function Elasticities - Translog

(1) (3)
VARIABLES Physical Financal

Log Capacity .87
Log Employment .35 .679
Log Fixed Assets .315

F for higher order terms 467.3 28,000
N 2522 1866

Notes: Estimates are derived from a full translog production function using methods from
Ackerberg et al. (2015). Elasticities are reported at median input values. Log age, decommission
status, entry, SOE status, and SOE x restructuring are endogenized in the TFP process. "Physical"
refers to using physical input, output, and capacity variables, "Financial" refers to using revenues,
input expenditures and capital stock.
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Table 20 shows the actual parameters from the translog specification to give a
sense of how elasticities may vary over the distribution of labor and capital. The
value added specification tends to attribute higher returns to scale at higher levels of
capital and labor, while the effect is more ambiguous using physical measures.

Table 20: ACF Production Function Parameters - Translog

(1) (3)
VARIABLES Physical Financial

k 1.06 -.683
(.002) (.001)

l -.082 .024
(.003) (.001)

kl .010 -.047
(.004) (.0001)

k2 -.01 .051
(.002) (.002)

l2 .025 .101
(.002) (.001)

N 2522 1866

Notes: Estimates are derived from a full translog production function using methods from Ackerberg et al. (2015). Log
age, decommission status, entry, SOE status, and SOE x restructuring are endogenized in the TFP process. "Physical"
refers to using physical input, output, and capacity variables, "Financial" refers to using revenues, input expenditures and
capital stock.

9.2.3 Gross Production Functions

Table 21 features the production function estimates using the Gandhi et al. (2020)
method. Results are extremely close to constant returns to scale for the physical
production specification, although the coefficient on labor is extremely low. As
argued earlier in the paper, a gross production function approach that relies on
first-order conditions may be less appropriate than a value added one with broader
assumptions about input optimization, especially in contrast to the PFP models.
However, the qualitative results based on productivity residuals change very little
across methods.
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Table 21: GNR Production Function Results (Cobb-Douglas)

(1)

Log Capital .389
(.043)

Log Labor -.04
(.059)

Log Materials .674
(.003)

N 1,874

Notes: Assumes restructuring happens in 2002. Output equation uses physical measures. Standard errors in parentheses.
Results come from matched financial-physical dataset.

9.3 Aggregate Comparisons

Table 22 compares estimated total production from coal power plants to aggregate
data collected by the IEA for available years. The reported 85% of production figure
is within 3% in the available years. This, paired with the aggregate pollution analysis
on data from the same source in Gowrisankaran et al. (2021), shows that the physical
input and output dataset closely matches all available public sources. Thus, while
the dataset has not been independently verified on the individual observation level,
the best available estimates suggest that it is trustworthy.

Table 22: Sample vs IEA Production Estimates (TWh)

Year Sample (N) IEA (MW) %
2001 915 (2000 data) 1115 82
2004 1490 1713 86
2005 1691 1972 86
2008 2352 2733 86
2009 628.1 2913 86
2010 672.0 3273 88

Notes: Table shows comparisons between all production in original dataset (before sample
exclusions) and figures for total coal electricity generation in yearly reports from the Inter-
national Environmental Agency. IEA reports accessed variously through the University of
Delaware library’s access to the OECD archives, the wayback machine at the internet archive, or
http://observ.nucleaire.free.fr
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